

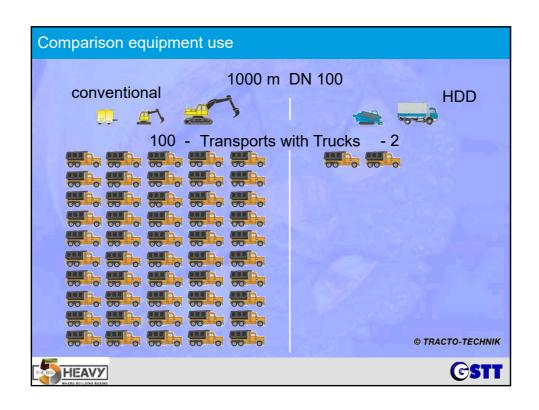
Why trenchless?!

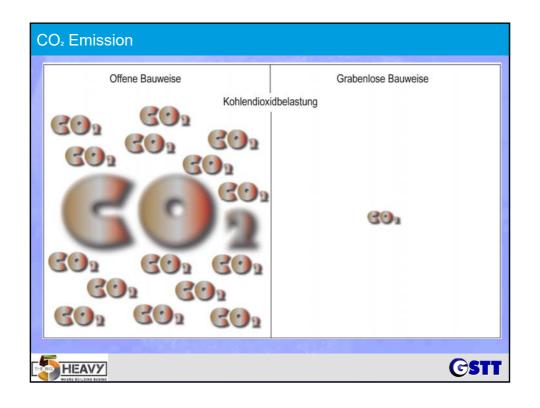
Advantages of trenchless method, <u>direct</u> costs:

- · reduction of roadway rubble
- reduction of excavation an transportation of soil
- · reduction of repositioning of other pipelines
- · reduction of groundwater lowering

Economic savings, <u>indirect costs</u>:

- · reduction of traffic jam
- reduction of noise- and CO₂-Emission
- · reduction of risk of accidents
- · reduction of risk to damage close-by buildings
- · less influence of residents
- · protection of vegetation and groundwater


Savings as a result from trenchless construction from 1984 bis 2016


Saving direct costs in new constructions in the sewer field in Berlin from 1984 - 2017:

- **75 Mio. €** could be saved could be saved and thus invested in other projects
- **1,47 Mio. m²** Road surface had to be not broken and therefore not restored
- **2,7 Mio. m³** Soil had to be excavated and not reinstalled or transported and disposed
- 223.000 Truckloads had not be transported through the city
- **238 Mio. m³** Groundwater had to be not promoted (~ water supply of Berlin for approximately 14 months)

CO₂ Emission - Example

Project details:

Application: main sewer

location: city; 2 track road; left track; grass strip 3m

length: 250 m depth: 4,50 m breadth: 1,50 m pipes: DN 600

Geology: gravel/clay (density 1,70 t/m³)

groundwater:

litre Petrol 2,33 kg CO₂ * / 2,37 kg CO₂ ** litre Diesel 2,64 kg CO₂ * / 2,65 kg CO₂ ** (total burning)

*Umweltbundesamt
**Kraftfahrtbundesamt

CO₂ Emission - Example

conditions:

- · site-condition: good
- · 100% removal of excavated soil
- fuel consumption (litre/kWh) (from register of construction equipment)
- diesel consumption in I CO2-Emision in kg
 - 3,154 kg CO₂/kg fuel x 0,82 kg/L (diesel) = 2,64 kg CO₂/litre
- treatment of asphalt: per 1 to ca. 7 8 I diesel

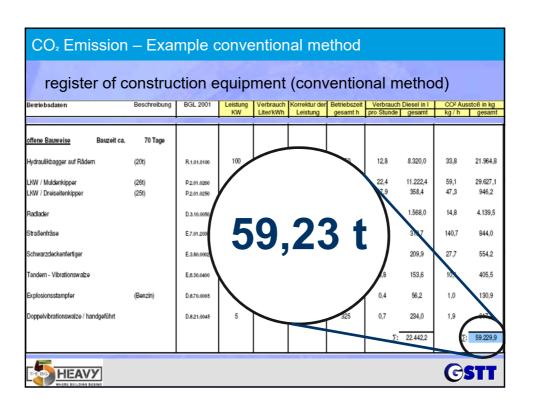
conventional method (70 days):

excavation + laying + backfilling + compaction: max. 4 m / day (without road surface)

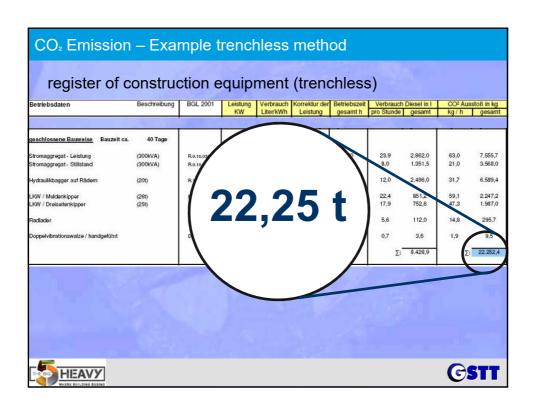
Road finishing machine max. working breadth 2 m

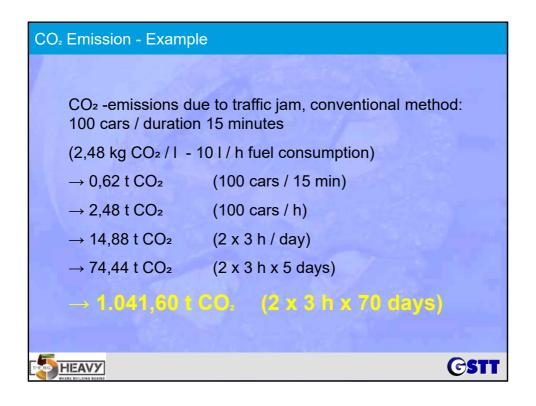
trenchless (40 days):

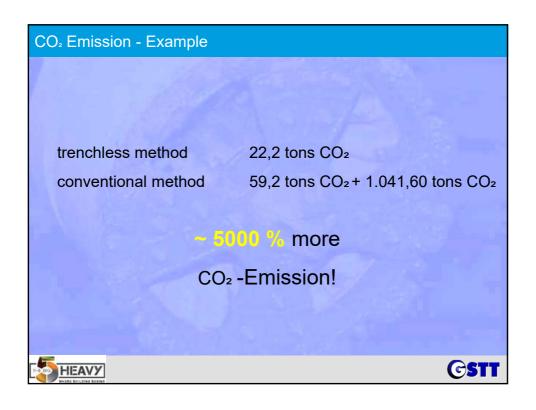
capacity: ca. 4 pies (12 m) / day

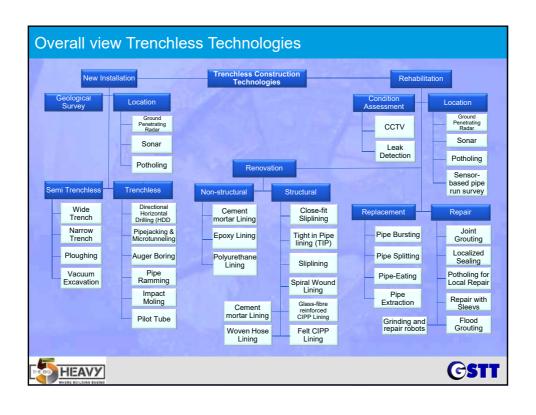

Starting pit: DN 3000/DA 3600; target pit: 2x DN2500/DA3000

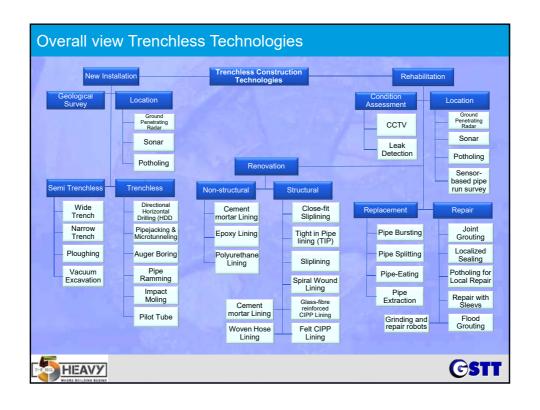
construction time: 30 h

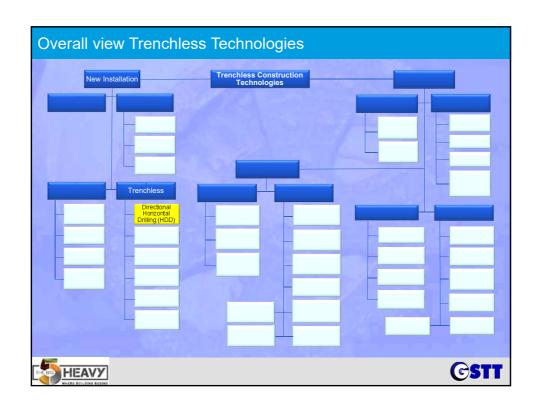


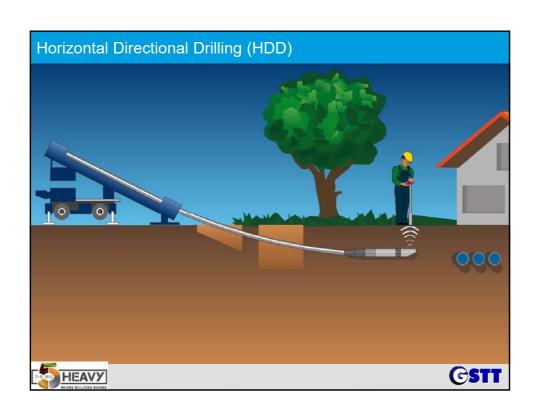

					,	entio/			,	
etriebsdaten	Beschreibung	BGL 2001	Leistung KW	Verbrauch Liter/kWh	Korrektur der Leistung	Betriebszeit gesamt h	Verbrauch pro Stunde	Diesel in I gesamt	CO ² Aus kg / h	sstoß in kg gesamt
ffene Bauweise Bauzeit ca	. 70 Tage									
lydraulikbagger auf Rādem	(20t)	R.1.01.0100	100	0,16	0,8	650	12,8	8.320,0	33,8	21.964,8
KW / Muldenkipper KW / Dreiseitenkipper	(26t) (25t)	P.2.01.0260 P.2.01.0250	200 160	0,14 0,14	0,8 0,8	501 20	22,4 17,9	11.222,4 358,4	59,1 47,3	29.627,1 946,2
adlader		D.3.10.0050	50	0,16	0,7	280	5,6	1.568,0	14,8	4.139,5
traßenfräse		E.7.01.2030	370	0,16	0,9	6	53,3	319,7	140,7	844,0
chwarzdeckenfertiger		E.3.80.0002	82	0,16	0,8	20	10,5	209,9	27,7	554,2
andem - Vibrationswalze		E.8.30.0400	30	0,16	0,8	40	3,8	153,6	10,1	405,5
xplosionsstampfer	(Benzin)	D.8.70.0065	2,7	0,16	1	130	0,4	56,2	1,0	130,9
		D.8.21.0045	5	0.16	0.9	325	0.7	234.0	1.9	617.8

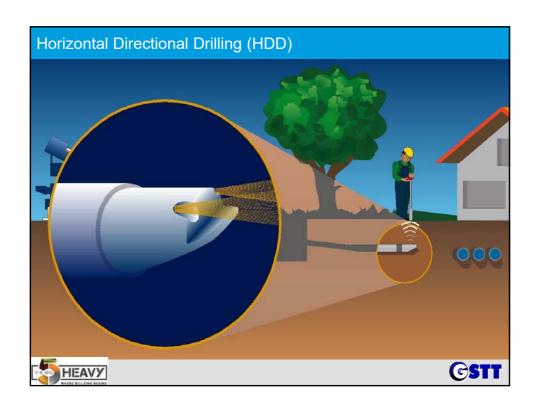


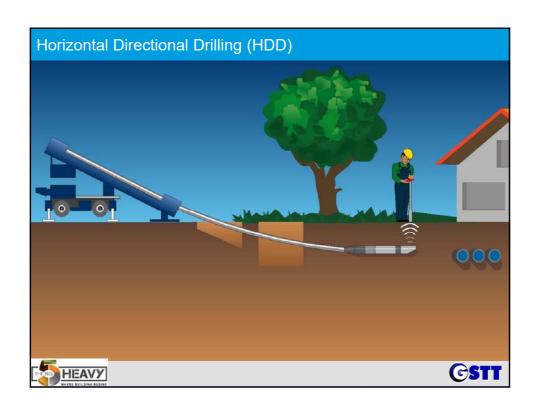

Stromaggragat - Stillstand (300k/A) Ro.10.000 265 0,15 0,2 170 8.0 1.351,5 21,0 3.588 hydraulikbagger auf Rådem (20t) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589 LINV / Mulderkipper (26t) P.2.01.0200 200 0,14 0,8 38 22,4 851,2 59,1 2.247 LINV / Dreitseitenkipper (25t) P.2.01.0200 160 0,14 0,8 42 17,9 752,6 47,3 1.997 Radlader D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295, Doppelvibrationswalze / handgeführt D.3.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) Ro.10.0360 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555 Stromaggregat - Stillstand (300kVA) Ro.10.0360 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568 Hydraulikbagger auf R\u00e4dem (20t) R.1.01.0160 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589 LKW / Muldonkipper (26t) P.2.01.0260 200 0,14 0,8 38 22,4 951,2 59,1 2.247 LWV / Dreiseitenkipper (25t) P.2.01.0260 160 0,14 0,8 42 17,9 752,6 47,3 1.987 Radiader D.3.10.0450 50 0,16 0,7 20 5,6 112,0 14,8 295, Doppelvibrationswalze / handgeführt D.8.21.0445 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) R.0.10.0900 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555, Stromaggregat - Stillstand (300kVA) R.0.10.0900 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568, Hydraulikbagger auf Rädern (201) R.1.0.1000 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589, LKW / Muldonkipper (261) P.2.01.0900 200 0,14 0,8 38 22,4 851,2 59,1 2.247, LWW / Dreitsettenkipper (251) P.2.01.0900 160 0,14 0,8 42 17,9 752,6 47,3 1.967, Radlader D.3.10.0950 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) Ro.10.0900 265 0,15 0,6 120 23,9 2.862,0 63,0 7.565,7 Stromaggregat - Stillstand (300kVA) Ro.10.0900 265 0,15 0,2 170 8,0 1.361,5 21,0 3.568,4 Hydraulikbagger auf Rädem (20t) R.1.0.1000 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 LKW / Muldonkipper (26t) P.2.01.0800 200 0,14 0,8 38 22.4 851,2 59,1 2.247,3 LWW / Dreitsettenkipper (25t) P.2.01.0800 160 0,14 0,8 42 17,9 752,6 47,3 1.987,4 Radlader D.3.10.0950 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.3.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) R.0.10.0800 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555,7 Stromaggregat - Stillstand (300kVA) R.0.10.0800 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,0 Hydraulikbagger auf Rädern (20t) R.1.0.1000 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 LKW / Muldorkipper (26t) P.2.01.0200 200 0,14 0,8 38 22,4 851,2 59,1 2.247,2 LWW / Dreisetenkipper (25t) P.2.01.0200 160 0,14 0,8 42 17,9 752,6 47,3 1.987,0 Radlader D.3.10.0690 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.3.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Betriebsdaten	Beschreibung	BGL 2001	Leistung KW	Verbrauch Liter/kWh	Korrektur der Leistung	Betriebszeit gesamt h	Verbrauch pro Stunde	Diesel in I gesamt	kg / h	stoß in kg gesam
Stromaggregat - Leistung (300kVA) R.0.10.0900 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555 Stromaggregat - Stillstand (300kVA) R.0.10.0900 265 0,15 0,2 170 8.0 1.351,5 21,0 3.568 - Hydraulikbagger auf Rädern (20t) R.1.0.1090 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589 LIOW / Muddenkipper (26t) P.2.01.0900 200 0,14 0,8 38 22,4 851,2 59,1 2.247 LIOW / Dreiseitenkipper (25t) P.2.01.090 160 0,14 0,8 42 17,9 752,6 47,3 1.987 Radiader D.3.10.095 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) R.0.10.0900 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555 Stromaggregat - Stillstand (300kVA) R.0.10.0900 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568 - Hydraulikbagger auf Rädern (20t) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589 LIW/ Muddenkipper (26t) P.2.01.0200 200 0,14 0,8 38 22,4 951,2 59,1 2.247 LIW/ Dreiseitenkipper (25t) P.2.01.0200 160 0,14 0,8 38 42 17,9 752,6 47,3 1.987 Radiader D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295, Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) R.o.10.0900 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555, Stromaggregat - Stillstand (300kVA) R.o.10.0900 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568, - Hydraulikbagger auf Rådern (20t) R.1.0.1000 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589, LIGW / Muddenkipper (26t) P.2.01.0800 200 0,14 0,8 38 22,4 851,2 59,1 2.247, LIGW / Dreiseitenkipper (25t) P.2.01.0800 160 0,14 0,8 42 17,9 752,6 47,3 1.987, Radiader D.o.1000 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.o.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) R.0.10.0800 265 0,15 0,6 120 23,9 2.862,0 63,0 7.565,7 5tromaggregat - Stillstand (300kVA) R.0.10.0800 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,4 Hydraulikbagger auf Rådern (20t) R.1.0.10.080 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 LIGW / Muldenkipper (26t) P.2.01.0200 200 0,14 0,8 38 22.4 851,2 59,1 2.247,3 LIGW / Dreiseitenkipper (25t) P.2.01.0200 160 0,14 0,8 42 17,9 752,6 47,3 1.967,4 Radiader 0.3.10.069 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt 0.0.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300k/A) R.0.10.0300 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555,7 5tromaggregat - Stillstand (300k/A) R.0.10.0300 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,0 - Hydraulikbagger auf Rådern (20t) R.1.0.1000 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 LIGW / Muldenkipper (26t) P.2.01.0200 200 0,14 0,8 38 22,4 851,2 59,1 2.247,2 LIGW / Dreiseitenkipper (25t) P.2.01.0200 160 0,14 0,8 42 17,9 752,6 47,3 1.997,0 Radiader 0.3.10,000 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt 0.0.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5									- 1		
Stromaggregat - Stillstand (300kVA) Ro.100300 265 0.15 0.2 170 8.0 1.351,5 21,0 3.568 Hydraulikbagger auf Rädern (20t) R.1.01.0100 100 0.15 0.8 208 12,0 2.496,0 31,7 6.589 LKW / Mulderkipper (26t) P.z.01.0200 200 0.14 0.8 38 22,4 851,2 59,1 2.247 LKW / Dreisoteinkipper (25t) P.z.01.0200 160 0.14 0.8 42 17,9 752,6 47,3 1.997 Radiader D.3.10.0050 50 0.16 0.7 20 5,6 112,0 14,8 295,0 Doppelvibrationswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Doppelvibrationswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.9 5 0.7 3,6 1,9 9,5 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.7 0.9 5 0.7 0.7 0.7 Descriptionswalze / handgeführt D.8.21.0045 5 0.16 0.7 0.9 5 0.7 0.7 0.7 Descriptionswalze / handgeführt D.8.21.0045 0.7 0.7 0.7 0.7 0.7 0.7 Descriptionswalze / handgeführt 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Descriptionswalze / handgeführt 0.7 0.7 0.7 0.7 0.7 Descriptionswalze / handgeführt 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Descriptionswalze / handgeführt 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Descriptionswalze / handgeführt 0.7 0.7 0.7 0.7 0.7	Stromaggregat - Stillstand (300kVA) R.0.10.000 265 0.15 0.2 170 8.0 1.351,5 21,0 3.568 Hydraulikbagger auf Rädern (20t) R.1.0.1000 100 0.15 0.8 208 12,0 2.496,0 31,7 6.589 LINY / Mulderkipper (26t) P.2.01.0200 200 0.14 0.8 38 22,4 851,2 59,1 2.247 LINY / Dreisoteinkipper (25t) P.2.01.0200 160 0.14 0.8 42 17,9 752,6 47,3 1.937 Radiader D.3.10.0050 50 0.16 0,7 20 5,6 112,0 14,8 295, Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0.9 5 0,7 3,6 1,9 9,5	Stromaggregat - Stillstand (300kVA) Ro.10.000 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,	Stromaggregat - Stillstand (300kVA) Ro.10.0300 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,4	Stromaggregat - Stillstand (300kVA) Ro.10.0300 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,0	eschlossene Bauweise Bauzeit ca.	40 Tage									
Stromaggregat - Stillstand (300kVA) Ro.10.0800 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568 - Aydraulikbagger auf Rådern (20t) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589 - LKW / Muldenkilpper (26t) P.2.01.0280 200 0,14 0,8 38 22,4 851,2 59,1 2.247 - LKW / Dreisentenkilpper (25t) P.2.01.0280 160 0,14 0,8 42 17,9 752,6 47,3 1.987 - Radiader D.3.10.0090 50 0,16 0,7 20 5,6 112,0 14,8 295, - Opppelvibrationswalze / handgeführt D.3.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Stillstand (300kVA) Ro.16.0300 266 0,15 0,2 170 8,0 1.351,5 21,0 3.668 -tydraulikbagger auf Rådern (201) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589 -LKW / Muldenkipper (261) P.2.01.0200 200 0,14 0,8 38 22,4 851,2 59,1 2.247 -LKW / Dreisettenkipper (251) P.2.01.0200 160 0,14 0,8 42 17,9 752,6 47,3 1.987	Stromaggregat - Stillstand (300kVA) R.o.1o.0360 265 0,15 0,2 170 8,0 1,351,5 21,0 3,568,	Route Rout	Ro.1e.0300 Ro.1e.0300 Ro.1e.0300 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,0	Stromaggregat - Leistung	(300kVA)	R.0.10.0300	265	0,15	0,6	120	23.9	2.862,0	63,0	7.555,7
LNV / Mulderhilipper (26t) P.2.01.0260 200 0.14 0.8 38 22.4 951,2 59,1 2.247 LNV / Dreiseltenhilipper (25t) P.2.01.0260 160 0.14 0.8 42 17,9 752,6 47,3 1.987 Radiader D.3.10.066 50 0.16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	LNV / Mulderhilipper (26t) P.2.01.0260 200 0.14 0.8 38 22.4 851,2 59,1 2.247 1,00 / Drelastrehilipper (25t) P.2.01.0260 160 0.14 0.8 42 17,9 752,6 47,3 1.987 Radiader 0.3.16.0060 50 0.16 0,7 20 5,6 112,0 14,8 295, Doppelvibrationswalze / handgeführt 0.821.0045 5 0.16 0.9 5 0,7 3,6 1,9 9,5	LNV / Mulderkipper (26t) P.2.01.0260 200 0.14 0.8 38 22.4 851.2 59.1 2.247, LNV / Dreiseltenkipper (25t) P.2.01.0260 160 0.14 0.8 42 17.9 752,6 47,3 1.987, Radiader 0.3.10.069 50 0.16 0.7 20 5.6 112.0 14,8 295.7 Doppelvibrationswalze / handgeführt 0.0.21.0045 5 0.16 0.9 5 0.7 3.6 1,9 9.5	LNV / Mulderkipper (261) P.2.01.0200 200 0.14 0.8 38 22.4 851,2 59,1 2.247,3 LNV / Dreiseltenkipper (251) P.2.01.0200 160 0.14 0.8 42 17,9 752,6 47,3 1.987, Radiader 0.3.10,0050 50 0.16 0.7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt 0.8.21.0045 5 0.16 0.9 5 0,7 3,6 1,9 9,5	LNV / Mulderkipper (26t) P.201.0290 200 0.14 0.8 38 22.4 851.2 59.1 2.247.2 1.00 / Dreiseltenkipper (25t) P.201.0290 190 0.14 0.8 42 17.9 752,6 47.3 1.997.0 38. 38. 38 22.4 851.2 59.1 2.247.2 1.00 / Dreiseltenkipper (25t) P.201.0290 50 0.16 0.7 20 5.6 112.0 14.8 295.7 Doppelvibrationswalze / handgeführt D.821.045 5 0.16 0.9 5 0.7 3.6 1.9 9.5				265	0,15	0,2	170	8,0	1.351,5	21,0	3.568,0
LNW / Dreiseltenkipper (25t) P.2.01.0250 160 0.14 0.8 42 17,9 752,6 47,3 1.987 Radiader D.3.10.0050 50 0.16 0,7 20 5,6 112,0 14,8 295, Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	LNV / Dreisettenkipper (25t) P2.01.0250 160 0.14 0.8 42 17,9 752,6 47,3 1.987 Radiader D.3.10.0050 50 0.16 0,7 20 5.6 112,0 14,8 295, Doppelvibrationswalze / handgeführt D.8.21.045 5 0.16 0.9 5 0,7 3,6 1,9 9,5	LNW / Dreiseltenkipper (25t) P.2.01.0250 160 0,14 0,8 42 17,9 752,6 47,3 1.987, Radiader D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.3.21.045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	LNW / Dreiseltenkipper (25t) P.2.01.0250 160 0.14 0.8 42 17,9 752,6 47,3 1.987,6 addiader D.3.10.0650 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.3.21.045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	LNW / Dreiseitenkipper (25t) P.201.0280 180 0.14 0,8 42 17,9 752,6 47,3 1.987,0 Radiader D.3.10.0660 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Doppelvibrationswalze / handgeführt D.8.21.045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	-lydraulikbagger auf Rädern	(20t)	R.1.01.0100	100	0,15	0,8	208	12,0	2.496,0	31,7	6.589,4
KW / Dreiseitenkipper (25t) P.2.01.0250 160 0.14 0.8 42 17,9 752,6 47,3 1.987 Radiader D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,0 Oppelvibrationswalze / handgeführt D.8.21.045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	LNV / Dreitseltenkipper (25t) P2.01.0250 160 0.14 0.8 42 17,9 752,6 47,3 1.987 Radiader D.3.10.0650 50 0,16 0,7 20 5,6 112,0 14,8 295, Oppelvibrationswalze / handgeführt D.8.21.0445 5 0,16 0,9 5 0,7 3,6 1,9 9,5	kW / Dreiseitenkipper (25t) P.2.01.0290 160 0,14 0,8 42 17,9 752,6 47,3 1.987,8 Radiader D.3.10.0690 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Oppelvibrationswalze / handgeführt D.8.21.0445 5 0,16 0,9 5 0,7 3,6 1,9 9,5	kW / Dreiseitenkipper (25t) P.201.0289 160 0.14 0.8 42 17,9 752,6 47,3 1.987,6 Radiader D.3.16.0660 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Oppelvibrationswalze / handgeführt D.8.21.048 5 0,16 0,9 5 0,7 3,6 1,9 9,5	kW / Dreiseitenklipper (25t) P.2.01.0250 160 0.14 0.8 42 17,9 752,6 47,3 1.987,0 Radiader D.3.1e.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Opppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	1014 / Madalandalan an	(00)		200	0.14	0.0	20	20.4	0510	50.1	2 247 5
Doppelvibrationswalze / handgeführt D.8.21.0645 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Doppelvibrationswalze / handgeführt 0.821.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Doppelvibrationswalze / handgeführt D.821.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Doppelvibrationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5		1000000									
					Radiader		D.3.10.0050	50	0,16	0,7	20	5,6	112,0	14,8	295,7
					Domokrihrationewalzo (bandooführt		D 9 24 0045	5	0.16	0.9	5	0.7	26	19	9.5
Σ: 8.428,9 Σ: 22.282	Σ: 8.428,9 Σ: 22.28	Σ: 8.429,9 Σ: 22.252	Σ: 8.428,9 Σ: 22.252,	Σ: 8.428,9 Σ: 22.2502,4	roppersonation areas a management		D.0.2 1.0045	"	0,10	0,5	,	_	310,83%	0.000	
												Σ:	8.428,9	Σ:	22.252,
					44.00										
						1996				* *					
					LIEAVV										TT










Why Trenchless Technology ?! 3 Examples of the plurality of trenchless techniques: For New Construction: • HDD - Horizontal Directional Drilling (DN 25 – DN 1800) • Microtunnelling (DN 250 – DN 4200) For Rehabilitation: • CIPP - Cured-in-place pipe rehabilitation (DN 50 – DN 1800)

